
 1

 NCLVerse
A digital universe for student learning

Prathyush Pramod N
Student Number

110505992
Supervisor

Dr. Phillip Lord

-

-
-
-

 2

Abstract

 A university student has various digital tools at their disposal to stay on top of their academics. Unfortunately, these
tools suffer from a lack of vision when it comes to their architecture. Their lack of conceptual integrity in metaphors,
knowledge representation and user interface behaviours results in an incoherent whole that fails in realizing its full
potential.

 This dissertation is a proposal for creating a modular ecosystem of apps that forms a unified platform sharing a
common visual language with consistent knowledge representation. I propose that creating such a system results in
increased ease of use from the user perspective, better awareness of student performance for the teachers and saner
software development at the developer's end owing to the modular, centralized and coherent nature of the system.

Aims

 Architect and engineer a modular ecosystem of applications that form a unified platform to aid student learning.

Objectives

 My objectives are four-fold in this project:

To research and summarize the current systems in use and analyze their advantages and disadvantages and retain
all attributes that are deemed to be desirable.
To investigate about befitting architectures for digital ecosystems and on fostering communities around them.
Iteratively develop the applications and devise an appropriate architecture for interoperability between them.
To evaluate my design decisions based on feedback from colleagues and observation conducted on prototypes
through focus groups.

 3

Table of Contents

Acknowledgements
Overview

1. Introduction

2. Theory

2.1 Metaphors of the Ecosystem
2.1.1 The gestalt of the system
2.1.2 Building an Experential Gestalt
2.1.3 The Two worlds
2.1.4 On the dangers of metaphors
2.2 Growing an Ecosystem

3. Method

3.1 Designing the Visual Language
3.2 Nature of Software Development
3.3 Implementation
3.4 Research
3.5 Analysis

4. Discussion

4.1 Problem
4.2 Background
4.3 Principles
4.4 Ivory Tower
4.5 Curriculum
4.6 Dashboard
4.7 ExamSieve
4.8 ProgressMate
4.9 StudentPad
4.10 Supporting Sites

5. Evaluation

5.1 Evaluation
5.2 Results

 4

5.3 Learnings
5.4 Reflection

6. Coda

Future
Bibliography

 5

Acknowledgements

 The ideas presented in this dissertation are synthesized from various approaches that have been proposed over the
years in software industry and other active fields of research.

 I drew my inspirations from the teachings of great many people which include my tutors, colleagues and friends.
Many specific ideas have emerged from many informal conversations I have had with friends, blog posts I read and
conference talks I watched most of whose names have escaped me. But attribution has been duly noted wherever I
could identify them. I express my gratitude towards everyone who have helped shape my thinking and approach
towards software development.

 My views about software development has been greatly transformed by works of Alan Kay, Alan Perils, J.C.R
Licklider, Seymour Papert, Joe Armstrong and Rich Hickey and their principles on software development. Their ideas
have helped me form the bedrock for shaping my views toward creating software. I am deeply indebted to the Clojure
community for producing quality software and instilling in me some of the best philosophies produced in the software
community. A more comprehensive list of all the technologies used can be found in the appendix.

 My ideas about metaphors and conceptual integrity come from George Lakoff, Mark Johnson, Fred Brookes and
Donald Norman.

 I am grateful for the work of Edward Tufte's work on data visualization which served as a source of inspiration for
the work in unifying visual interfaces.

 I am deeply indebted to my tutor, Phillip Lord for allowing me to embark on his journey. His advice on software
development and time management turned out to be of great value for the project. The code authoring tools he has
developed for my code editor of choice Emacs made code annotation a far smoother experience. His continuous
support has impacted both the tangible and intangible aspects of the project in more ways than one.

 It was a great thing having my friends and colleagues to discuss the dissertation with at different stages of the
project. I would like to thank Benjamin Brown, Moad Abouzamazem, Alexander Filipov and Achint Soni for their
support throughout the project.

 All code developed towards creating this ecosystem has been open sourced and I look forward to see what comes of
it.

 6

Overview

 The dissertation is divided into 6 parts inclusive of the introduction and the code. In the upcoming sections, I detail
about various facets of the project. Theory section describes meta-level ideas that formed conceptual grounding for
the dissertation. Readers would be able to see how these abstract ideas were made concrete in method section. The
discussion section details how individual apps were put under scrutiny of the conceptual framework derived and their
internal as well as overall consistency within these framework is analysed. Towards the end, I evaluate my
dissertation based on the success criteria stipulated, describe my take aways from the project. I leave with pointers on
what I think future directions of this project might be if further work is to be carried out.

 7

1 Introduction

 The aim of this dissertation is to construct an ecosystem for learning that is architected from the ground up to form a
cogent platform that students can leverage. This would be accomplished with the help of a suite of apps that together
aid them in their learning process by employing a coherent visual language and behaviour throughout the apps in the
system. The central problem addressed is to minimise the endemic problems that accompany systems integrated in an
a la carte fashion. I propose much better can be done by providing a conceptual framework and constructing apps out
of this minimal set of principles put forth.

1.1 Background

 The preliminary conception of this idea came into shape when I started using digital systems enlisted in my
university. I started using these at a time when I was being exposed to the core principles of Computing Science and I
felt a major disconnect between the architectural principles of these apps with principles that I was learning in
Computing Science. For example, when the deadline of a course work or the timetable of a lecture is changed, it gets
updated on a system known as NESS and an email is sent out but Blackboard another system used for tracking
student progress shows the unmodified deadline. This results in generating confusion and discomfort among the
students. The students who were oblivious to the email sent out miss this fact entirely and end up getting to know
about this change only on submission time.

 During my time at university I started building a few apps in my extra time to help my colleagues on different
problem domains. But overtime I found out that my own apps suffered from the same kind of systemic errors found in
the academic environment. But this lead to the realisation that this is a recurrent problem that can be solved by
imposing an overall architecture. Hence this thesis is an attempt at unifying all those applications I developed over
time under a single architecture and growing it into a single unified platform with consistent knowledge
representation. Software systems found in a modern academic environment lack a coherent architecture. Status quo
is to pick modules à la carte that works well in a stand-alone fashion but not so well with other applications in the
environment. This creates problems that are insidious such as duplication and erroneous data, incoherent user
interfaces and so on. To make this concrete, Newcastle University currently employs a set of digital tools for catering
to the digital side of academics: Blackboard, NESS, Outlook, Panorama, Timetables, Crypt and S3P. No two of these
share the same visual language or architecture. This results in the students end up having to learn a new interaction
every time they use a new product. This learning remains non-transferable. This often works to the detriment of the
user as it results in confusion, reduced productivity, erroneous and redundant data which all leads to faulty decisions
when trying to interface with these tools.

1.2 The Solution

 As a student who spent the majority of his life dealing with digital systems and have seen others go through the same
difficulties, it felt worthwhile to choose my last year Bachelors degree dissertation to come up with a solution to this
problem. I propose a solution based on my conviction that designing an environment with a unified user interface and
consistent knowledge representation throughout, would enable the student to stay on top of their academics, stay

 8

connected with their peers and teachers, and to a certain extend, help inform where to spend their limited time and
focus budget on.

 There are a lot of other additional benefits that results from adhering to this methodology. For an academic
practitioner as the end user, this platform can be tailored to benefit them with better data collection about the student
performance and increased interaction with the students with the help of software created for the ecosystem. By
following to time proven software development techniques like modular architecture and single responsibility
principle, I argue that it also simplifies managing complexity that arises from software development.

 Now that I have outlined what this project is about, let me describe what the focal points of this project was not. I
have increasingly noticed that bespoke constructs and context specific performance optimizations most of the time
compromises flexibility. This means that it was in a sense worthless to go for specific performance tuning when the
final architecture hadn't been finalized. This is not to be taken to mean that they are de-emphasized because they
were irrelevant but it is only because of the nature of the project where the end requirements were not available prior
to development, it was most reasonable to keep them flexible and build composable abstractions that are as general
as possible which helps to solve a wide range of problems. Focusing or improving upon a certain facet of a software
means that if that component gets unused in the end, all the effort goes waste hence a this project adopted a lean
methodology of production popularised by Toyota [TPS 1988] having in mind the core idea that effort expended
towards this project were least wasted.

 Having described the background that lead up to the creation of this project let us see the metaphors and and
principles that underlie the creation of this system in the next section.

 9

2.1 Metaphors of the Ecosystem

 This chapter details the research made into metaphors that were used to model the system in abstract. Metaphors
employed here are primarily devised so as to imbue a coherent meaning for the whole project. As such, it represents
general background knowledge that informed decisions made throughout the project. They formed the grounding for
the architecture derived which in turn influenced and justified the design decisions made. Throughout the rest of this
thesis, I'll be invoking these metaphors to explain why certain trade-offs were made. Here's how they formed the
hierarchy that influenced the decisions made throughout the project:

 [Metaphor informs architecture informs design principles inform implementation.]

2.1.1 Metaphors We Live By

 A metaphor is typically defined as a literary device used for suggesting resemblance of one thing to another. But
George Lakoff and Mark Johnson in their seminal work 'Metaphors We Live By' [MWLB 1980] advance the idea that
our metaphors are pervasive not just in language but in our thoughts and actions. They argue:

 "Our ordinary conceptual system, in terms of which we both think and act, is fundamentally metaphorical in
nature. The concepts that govern our thought are not just matters of the intellect. They also govern our
everyday functioning, down to the most mundane details. Our concepts structure what we perceive, how we
get around in the world, and how we relate to other people. Our conceptual system thus plays a central role in
defining our everyday realities. If we are right in suggesting that our conceptual system is largely
metaphorical, then the way we think, what we experience, and what we do every day is very much a matter of
metaphor."

 Thus a metaphor has the power to drive the conceptual understanding of a user. Computers and the processes inside
them have been compared to a lot of metaphors in the past, one that I think that gets closest to the real nature of the
device is one by Alan Kay [CS 1984]. He compares it to the ultimate protean system, one that can take any shape or
form. He writes:

 "The protean nature of the computer is such that it can act like a machine or like a language to be shaped
and exploited. It is a medium that can dynamically simulate the details of any other medium, including
media that cannot exist physically. [sic] It is the first meta-medium, and as such it has degrees of freedom for
representation and expression never before encountered and as yet barely investigated. "

 10

 This remains true even today since the fuller capabilities of the computer hasn't been fully understood or explored
yet. It follows that a computer can be programmed to fit virtually any context or use case. The one that I think most
befitted this dissertation is to visualise the world as two. I view user facing end of the software which includes the
user interface, information architecture and everything that the user interacts with as a universe. This is where the
name NCLVerse is derived from. The other world which realizes this universe is that of computations. This is
modelled using a centralized client server architecture. These metaphors were responsible for informing the why
behind certain decisions.

2.1.2 Building an experiential gestalt

 Lakoff and Johnson also introduces an idea known as experiential gestalt in their book. They contend "that a cluster
of components are experienced as a whole by human beings which they find more basic than the parts."[Lakoff
Johnson 1980] This directly references the work of a prototype done by Rosch [Rosch 1978] in her work on
categorizations done by humans. A recurrent complex of properties, our concept of causation is at once holistic,
analysable into those properties and capable of a wide range of variation. My aim in structuring this system has to
enable a coherent whole whose sum is different when put together than the individual parts. This has been realized
with the help of recurrent patterns carefully positioned throughout the ecosystem.

 Though it might look like these models were figured out foremost and the truth is quite the contrary. The apps were
retrofitted in the end when the final architectural fit was realized. The architecture had to be grown along with the
work and it was only with frequent stepping back and revaluation that I was able to figure it out as it stands now.
This emerged only after a lot of experimentation and constantly evolving the architecture over time to accommodate
the discrepancies. Even then the architecture as it currently stands is not to be held as absolute and constant pruning
and controlled evolution is required to adapt it to newer apps and accommodate evolving user needs. This means that
the design guidelines and models outlined for software development in the next sections are to be evolved along as
new apps are designed and never take them to be steadfast rules.

2.1.3 The Two worlds

 The products delivered for this project encompass two different worlds: The user facing interface of the system and
the underlying world of computations that enabled this. The nature of these two systems, I have come to realize over
the course of the dissertation are very different.

 [Insert picture here]

 This is a visualisation of how I model the two systems: The upper layer being the front end user facing side of the
underlying structures. The dissertation will talk about how the ideas and concepts of the first world are more cogent
than the logic layer that lays hidden beneath. It can also be reflective of where my strengths and weaknesses lay.

The Visual World

-
-
-
-
-
-
-
-
-
-
-

 11

 The first world is that of the user facing end of software. This comprises of everything visual as well as the not so
visual (UX) part of the system. While visual side of software allows for infinite imagination it is constrained by the
underlying world of processes constraints it because of the limits of the computation.

Orbits as Courses

Modules as planets

Solar system as stages

Departments as galaxies

Galaxies form Universe

 The view adopted here is that of a universe and the student an astronaut. I visualise each orbit as a stage of a course
that student progresses through. A set of these courses can be taken as a solar system and a composition of these solar
systems form a galaxy which has been mapped on to a department. All the academic faculty of the university can thus
be thought of as a composition of a large number of galaxies. Inorder to make this concrete, Computer Science can be
thought of as the galaxy in which G400 is a solar system in which modules are planetary objects that rotate in their
course. This is where the name of the project is derived from.

The Computation World

 While the user interface of the systems takes the shape of a universe, these are built on a substrate of complex
underlying systems where things are very fragile if care is not supplied. This is because of the nature of software
development which is ever changing and could potentially lead to breakdown of whole software ecosystem if they are
ever allowed to unmonitored changes. Though the software development methodologies presents many ways to
organize this complexity, the basic nature of software breaking on interaction with it is still incumbent. This is partly
because Computer Science is an emergent field which is still not fully understood by humans, while various
methodologies have been proposed to solve the software crisis (Refer Out of Tarpit and Formal Verification Here) no
single solution has been proved to be superior.

 Given the case it was of much importance to hedge against the brittle nature of software and the environment of
constant flux software work against. After evaluating these criteria the model that seemed most fit was to use the
model of a centralized client server model.

 Rosen and Shklar in their book Web Applications Architecture [Shklar Rosen 2009] describes the server model as:

 [In a client-server model], servers … execute by waiting for requests from client programs to arrive and
processing those requests. Client programs can be applications used by human beings, or they could be
servers that need to make their own requests that can only be fulfilled by other servers. More often than not,

 12

the client and the server run on separate machines, and communicate via a connection across a network.

 This model albeit in a centralized fashion with a single server at the heart of the services that acts as a data store
with all the other applications acting as clients to this service is the model this thesis propose.

 The central data store for communication is named Ivory Tower (another name for Tower of Babel from the Bible).
This abstraction is the core data store from which the programs acquire their data over wire and execute respective
computations. It is to be noted that even though all the current applications in this ecosystem are written in a single
language, this architecture affords polyglot development and diverse styles of programming. This was one of the
primary decision drivers behind building the central abstraction known as the Ivory Tower which can be enabled to
transfer data in any message exchange format.

 Thus these two worlds, universe on the user facing side and a centralized server and clients model in the developer
facing end of this ecosystem are the two metaphorical lenses through which the design decisions framework adopted
for this thesis make sense.

2.1.4 On the dangers of metaphors

 Like any metaphor, the ones adopted here conceal some facets of the idea while revealing others. Leslie Lamport has
an incisive essay on why the metaphor of biology is limiting in the sense that it gives an amorphous definition to
programs that is inherently complex and not understandable, in this sense, metaphors we use to understand the
systems can be insidious. As mentioned in the essay, the metaphors we adopt to describe the systems might take us to
a cul-de-sac.

 Full evaluation of the drawbacks of these metaphors are has not been fully determined due to the limited time scope
of the dissertation. Healthy skepticism is to be maintained whenever an idea or a new concept is introduced into the
system. As mentioned earlier the models are not to be held absolute and the need for excessively shoehorning a new
application into the system is quite possibly revelatory of the inadequacy of the model adopted, a better approach
would be to evolve the current conceptual model so that it can accommodate them. This is described in the next
section which details about the architecture.

 13

2.2 Growing the Ecosystem

 People are central to any software architecture. The ecosystem would not be complete without a supporting
documentation of all the functionalities. The ecosystem as it stands now can be recognized as a set of core apps and
supporting structures around it. These supporting structures are vital for fostering communities around the
ecosystem. This prose elucidates the kind of supporting structures that have been built and analyses rationale behind
the creation of these structures from the viewpoints of the end user.

 The methodology chosen towards this thesis is to tackle it from the viewpoint of a human centered process to foster a
community around these systems. My views on building software was greatly transformed by a short treatise written
by Richard Cook called How Systems Fail [Cook 1998] The author suggests that software doesn't exist in a vacuum, it
is made alive with the people who use the software to meet their ends. He describes that they adapt the system to
maximize production and minimize accidents.

 In this sense, it was of foremost importance to value the expectations of the end user and the kind of actions enabled
for them by constructing the systems in certain ways. In this process I have identified personas of 3 users among
many.

 First one: The student Second one: The tutor Third one: The developer

 The core focus of this project has been the student and is tackled in detail in the upcoming sections. Hence I will
focus on the other two groups and detail in brief how the design decisions made from an architectural perspective
adds value to the lives of a faculty member and a developer.

 For a faculty member, this ecosystem if extended would enable them to collect student progression datasets in a
much smoother way. If appropriate application programming interfaces are put in place, there is a huge potential to
structure the ecosystem in a way that it optimizes to collect data on various aspects of student learning. A cursory
implementation that can be done with the help of the current set of apps proposed is to learn about interaction of the
student with the course materials using the Curriculum app proposed in the discussion section.

 From the perspective of a developer, the major advantage over current systems is that all the apps are developed in
the open in a modular fashion. This means that reuse of the components developed for these apps can promote code
reuse. Moreover, the ecosystem also enables creation of bespoke APIs that takes care of a single facet of student
learning. This means that even developers other than the core team under control of these systems (students, faculty
members and the like) can build their own applications using the interfaces provided.

2.2.1 Support structures

 I have identified that without supporting structures most of the apps however well designed will fail to meet the user
expectations. Whereas, when supplied with enough documentation, it helps the user leverage these apps to their full
potential.

 There are four documentation websites created in order to provide support the NCLVerse. Two sites are dedicated for
the developers and designers of these systems, there is a comprehensive documentation of all the core applications in

 14

NCLVerse for the potential user of the applications and finally a website that hosts this dissertation itself. They are as
follows:

2.2.2 Documentation Website

 The documentation website details about all features of all the apps that have been built for NCLVerse. A feature that
has not yet been implemented but not too hard to achieve is to have a contextual help menu. What this means is that,
whenever a user wants help about a certain interface element, she can click on the help button and then choose the
part that she is confused about and it would redirect her to that part of the documentation website where the
interface element would be mentioned in detail. This can be implemented with the help of hyperlinks that map the
interface element on to fragment identifiers on the documentation website.

2.2.3 Code Website

 The code website provides comprehensive documentation of all code that has been generated towards the project.
This is done in Literate programming style. Literate programming style is an approach to programming introduced by
Donald Knuth [Knuth 1992] in which a program is given as an explanation of the program logic in for the human
reader as opposed to the machine. This can be thought of as a narrative account of the developer's understanding of
how the code works.

2.2.4 On juggling the two worlds

 The real implications of creating the two world is felt when the users are brought into the system. As I demonstrated
and observed the usage patterns, it disabused me of many notions I had held over the software and it informed on
where to drive the software.

 As software construction goes it requires the frameworks to be internally consistent and follow some contracts. Much
like how a function deals with an input and chains it on to another. But when a developer starts working with this, he
is faced with the challenge of keeping everything intact.

 Hell are other people's abstractions. Picking libraries became an exercise in building taste on what is palatable and if
you identify with the author’s ideologies.

2.2.5 Supporting Websites

 I have devoted a about 1/5th of my time developing this dissertation towards developing these support structures
since they were a vital aspect for the students to learn about the new technologies in the ecosystem. One of the
drawbacks of spreading things around is that there a lot of points that are not in the picture. It can be argued that a
monolithic app would have one single point and all the elements can be found out if you explore the same app. But
when spreading the apps around. This is done in the current ecosystem by consistently cross-linking the picture with
the. The dashboard mirrors the concept of a central platform and then reaching out from it.

 15

Notes to Self

 Software as catalyst for improving time user spends online.

 16

3.1 Analysis of Current Systems

Competitive and Similar Products

An observation

 Some people go on to refresh the browser which can be simply eliminate with an email notification which user can
enable when they want to be updated or this data can be shown on the Dashboard using websockets if they prefer.
This is detrimental for the server which takes redundant hits and for the user since he is pointlessly clicking on the
reload button when there's no actual update. This induces a lot of time consuming behaviour such as constantly
refreshing the NESS (current portal for getting marks at Newcastle.) This in my opinion is serious time that can be
spent elsewhere in a more productive manner.

 17

3.2 Implementation

 Premature optimization is the root of all evil.

 Late binded partly because that fits with the style of my working and party because this enables more things to be
grasped.

Introduction

 Looking at the definition, we find A web application is a client-server application that uses a web browser as its client
program. It delivers interactive services through web servers distributed over the Internet (or an intranet). A web site
simply delivers content from static files. A web application can present dynamically tailored content based on request
parameters, tracked user behaviors, and security considerations.

 The main focus of the dissertation is not to innovate or break new grounds in algorithmic analysis or one up
performance benchmarks. It is simply to find out if an ecosystem of apps works better for the student experience over
a unified system plethora of services that are put together without any kind of conceptual integrity.

On work

 This approach is popular and is known as EDSL.

 As with most new ideas, it originally happened in isolated fits and starts.

 We would only know where we are going after we reach there.

 Looking back with a rear view mirror.

 Optimizing after the fact.

 Premature optimization is the root of all evil.

 How things can be made more abstract when boredom strikes.

Candidates

 Low fidelity prototypes

 High fidelity prototypes

 I have sticked with a methodology of following very minimal low fidelity prototyping. One reason is that I have a
good grasp since I worked in the user interface industry for around 7 years now and the other reason being, while the
low fidelity prototypes do provide the affordance of being able to iterate through a large mass of designs it ends up

 18

being very far from the final product.

Improving interactivity

 The main impact of AJAX is that the web experience is brought closer to that of client-server applications, allowing
for a more immediate dynamic interaction between the user and the web application. AJAX and Websockets

 Things are in place to poll the differences. If the system is put to practice enabling websocket polling is not far away.
Clojure libraries such as Sente [link] enables this in a very effortless manner.

 19

3.3 Designing the Visual Language

 One of the main challenges in creating software products is developing the visual language. User interface design is a
cross functional discipline that encompasses areas such as interaction design, visual design and information
architecture. When developing a design language, it is of utmost importance that harmony is maintained across the
whole spectrum of interface design. Harmony, both internal as well as across, is to be conserved at a macro level with
a coherent visual language and obvious information architecture, down to the micro level where consistency among
knowledge representation artifacts such as icon labels, module codes and colour indicators come into play.
Discrepancy among any of the variables spread across this spectrum would result in reduced usability of the end
product. A successful act of balancing in these results in a user interface which is easy to access, understand, and
facilitate user activity. These principles are encapsulated by creating a design philosophy which employs a common
lexicon of terms to describe the various concepts that occur throughout the system.

3.3.1 The visual language

 The school of thought in user interface design recently bifurcated with the advent of so called flat design. [Allan
2012] [Schiff 2015] Both comes with their own precepts on how a design aesthetic is to be envisaged. Combining my
previous experience in the industry as a user interface designer and in the light of detailed analysis of the two schools,
the approach that I adopted here is a synthesis of ideas from both worlds. It is an optimum which can be found
between the two styles by appropriating the styles to the right context. The approach adopted in this project is as
follows: The apps use shaded look that is characteristic of the old design aesthetic for all interactive elements. This is
done with the idea in mind that all elements that are pseudo-3D in their appearance would attract user interaction
since they indicate a sense of depth which is characteristic of real world objects. [Apple 2002] This is juxtaposed with
a flat aesthetic for elements that are purely graphic visualization of data but doesn't afford any interaction. The logic
behind this is that the user would be able to quickly predict which elements are interactive and thus adheres to the
principle of least surprise. [Raskin 2002]

 A user interface is much more than meets the eye. As a matter of fact, Donald Norman, a pioneer in user interface
research outlines a set of principal heuristics on his website that are widely used in the industry to improve the
usability of an application [Nielsen 1995]

Notes to self

 Need more support for the usability area.

3.3.2 Usability first

 ISO9241 [ISO9421] define usability as:

 "The extent to which a product can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use."

 20

 Seen in this light, the design language's main goals were in maximizing usability. A more detail analysis is available
in the methods section but to give an brief illustration of how design tradeoffs were made, it can be seen in this image
from one of the apps designed for this ecosystem called ProgressMate that the irrelevant details were relegated to the
back and only the details that mattered were brought to the forefront.

 Provide detailed discussion of the example.

 One other thing that I have followed throughout is to minimize the requirement of user interaction with the elements
on screen and making it intentionally harder when the action is a rare one. Even thought one additional click might
only amount to half a seconds delay compared to one, this when conducted by 4000 users doing it 10 times a day
results in 4000 * 2 * 0.5 = 5 human hours on a large scale. This amount of time lost only due to an overlooked aspect
from the designer's side in alarming. Hence, considerable attention was supplied in putting the relevant data first and
hiding away the irrelevant. A detailed analysis would reveal that this principle has not yet been fully achieved yet, but
I have strove for such accordances wherever possible.

 A corollary that falls out from this decision is that actions that which are not used frequently are hidden behind two
step actions. Even though the experience derived by the user is largely visual there are a lot of critical invisible
parameters such as responsiveness of a user interface plays a considerable role in determining how the user
experience is impacted. When it comes to the visual user interface, the possibilities of representations are almost only
limited by the imagination of the designer. Since this project attempts to create a suite of apps directed towards
student learning, it was of high priority that two factors were given main focus: Primarily, it had to be ensured that
no time of the user was wasted and secondly that there was a coherent narrative spread through the app and how it is
all connected together.

3.3.3 Coherence over Consistency

 The design methodology adopted for this project outlines a unification of the design using a consistent visual design
language as proposed by the style guides like that of Google and Heroku [link] [link]. I have found from my
experience over the such guidelines while hinders the creativity of a designer. Since what is being created here is a
platform I had to ensure that the future is kept in mind and all that this platform sets out is to have overall coherence.
That is coherence outweighs consistency.

 Where possible consistency has been brought in, but it felt like a better choice to make room for new design elements
since a fuller understanding of the ecosystem gained by observing usage patterns after this ecosystem goes into
production can only yield understanding at this understanding. Only a preliminary understanding of this has been
achieved so far and it was most sensible to leave it open. This allows new design elements to be incorporated into the
system at a later stage.

 A system was to use a cogent visual language that covered the whole spectrum of the apps. A lot of principles in
constructing the systems were borrowed from Design of Everyday Things and the Tufte tetrology. I greatly believe in
the concept of personal computing as an amplifier for human reach. And most if not all of the concepts governing the
UI has starts flowing having this as the central precept. Inorder to maintain this, the things that had to be done were

 21

tight feedback loop. Conceptual Integrity was maintained. Designing with the user in mind.

 Each app has a primary colour and a secondary colour for highlighting. The behaviour is made consistent with the
help of user interface patterns like the navigation bar on the top.

 [Give a sample image here]

3.3.4 Beyond the visuals

 There are parameters of the system that something that honours the consistency within the system can be made since
there's more than just visual consistency that meets the eye that keeps the system coherent. This is discussed in the
following section. Provide detailed analysis of how information architecture has helped define the internal
consistency. The discussion section gives a thorough account of the decisions that have been made across the
applications in this ecosystem to make the user experience as smooth as possible.

Extra Reading

 http://nxhx.org/RedefiningSoftware/

 The case against user interface consistency
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.6480&rep=rep1&type=pdf

Knowledge Representation

 http://www.jfsowa.com/ontology/index.htm

 22

2.4 Nature of Software Development

 Building software is a continuous decision making process. Software is repeatedly hit by wavefronts of changes
initiated by multiple agents. Hence, it was of utmost importance that the philosophy and the principles laid out here
would not stand in the way of adaptability of the system. This was held as the central principle behind structuring the
system or in other words ability to adapt change is the major parameter worth benchmarking the efficacy of this
architecture against.

2.4.1 Developing the Architecture

 Architecture is defined as "the process and product of planning, designing and constructing buildings." Buildings here
can be substituted for software without losing much in intend.

 There are only two hard things in Computer Science: Cache Invalidation and Naming Things. - Phil Karlton

 Software systems are complex because of the fact that there are a lot of entities and myriads of relationships among
them. Inorder to have a control in creating systems as they grow complex, it was essential that recurrent patterns
were spotted and given a name to, so that it helped to manipulate and reason about these concepts. As the size of the
systems in the current project started growing one of the biggest challenges came in the form of having to name
things. It was one of the increasingly difficult concepts to minimize the name clashes as and keep them separated
apart so that there was no confusion.

 Fred Brooke's in his book argues that coherent systems are the one's where the whole system can be kept in ones'
mind as noted by Fred Brooks. As he notes, it became increasingly difficult when it came to the naming aspect to keep
all of this in my mind.

 Inorder to construct an architecture, a language haS to be developed to talk about it. This made the architecture
tangible and provides an unambiguous description of architectural building blocks as well as concrete system while
abstracted away from implementation details.

 The architecture required definition of the building blocks (types of things) from which the actual system will be
built. It can be thought of as a bespoke language constructed in order to talk about the system. Though I couldn't take
it to a fuller refinement, I have provided systems diagrams [provide crosslink] to explain the construction of the
software created for the ecosystem.

2.4.2 Choosing a programming language (Read)

 Controlling complexity is the essence of computer programming. — Brian Kernighan

 23

 Software development is an enterprise that is deeply enmeshed with controlling complexity has been one of the
pivotal concerns in this project. As Djikstra points out "computing scientist’s main challenge is not to get confused by
the complexities of his own making", this rang quite true throughout this project.

 Almost all of this project was completed in a programming language known as Clojure. It's a Lisp that runs on the
JVM. As of the writing it has emerged as the most popular lisp ever written. But popularity can't be held as an
indicator of quality. What I feel is a good indicator is the ease with which a tool enables creation and in this regard
Clojure proved to be a solid tool to build software systems. I am convinced that the nature of minimal syntax of Lisp
and composability of mathematical functions are great concepts to manage the emergent complexity when developing
software. The great tooling around the core language and an active and smart community around the language have
been pivotal towards this achievement. The lanugage being functional in nature also helped me learn a lot about
programming in general since my education at the university was heavily focused towards object oriented and
imperative languages. Simply put, it has been transformative in more ways than one. Simple core abstractions,
immutability, referential transparency and a whole lot of other great concepts that Clojure entails have greatly shaped
the way I program and I hope will continue to influence my future. Implications of developing in a functional
paradigm is mentioned in the methods section.

 A note that that I have to add about Clojure is that it simply doesn't make the software development process easy for
you. It is simply not so for an incoming newbie. You have to be well versed on a large pool of concepts to help it to
see the programming domain in the way it sees but once you are beyond that plateau, leveraging Clojure leads to a
simplified view of creating processes and procedures.

2.4.3 Shape of the systems

 Describe the steps taken in order to making the systems legible.

2.4.4 Dogfooding (Rewrite)

 There is a concept known as dogfooding which means to test the software by yourself. Since I am one among the
target audience for which I'm constructing this system for, it was a natural fit. But instead of focusing on how these
helped inform my academic decisions which I'm relegating to the evaluation section I will briefly mention how I got a
good taste of this when I used my docs-gen [NVDocsGen 2015] [link] to generate the documentation for describing
the apps in the ecosystem. It was a good experience to create software that describe the docs generator. This was a
good benchmark to test the soundness of the concept as you continuously used the software yourself while also
presenting an alternative view, I made sure that I shared my creations with my colleagues to see the sticking points or
potentially confusing interactions that might arise.

2.4.5 Componentized apps (Reread)

 Systems had to be constructed with the idea that specifications would always change. And as the saying goes change
being the only thing that is constant, it was high priority to build this ecosystem in a manner that it accommodated

 24

change. This has been achieved by keeping the systems modular.

 The nature of lisp lends itself to create components which can be weaved together to form a whole app. I could only
fare as far as creating structures of web components as outlined in the development section, but some more work is to
be done in order to make it truly componentized. This means that apps can be composed as a series of higher order
functions.

 One of the central precepts of this dissertation is that of modularization and all the apps can be considered as an
module that consists of further more modules inside them. Due to my limited time and experience I had with lisp this
has not been realized to a fuller extend in this project but to give a brief account of how this can be enabled, here's
some very minimal Clojure code that uses the compose function in Clojure.

; Comp(ose)ing the components together (def app ((comp) header main-area footer)) ; Passing in the data (app
data)
 This would help enable the componentization and hence reuse of different modules developed for each app among
the different apps

2.4.6 Software eats itself. (Reread and Illustrate)

 Better abstractions enable structuring your programs better. Throughout the process I was able to see how a
thorough abstraction of a certain model of process enabled me to be more flexible at designing my functions. In order
to give a simple illustration:

 The code

 (def)

 whereas if I employ the following code:

 (def)

 would result in much more flexibility in terms of the actual product. This was proven time and again throughout the
time I did my dissertation.

 One way is to start from scratch and supply as much care and control over everything by building them from the
ground up but the scope of this dissertation as it had to be produced in a limited time didn't allow for such levels of
explorations. I have to mention that the language adopted for building this ecosystem played a key part in keeping
the complexity to a manageable level. Also, this nature of software being always in flux is what lead me to create the
current architecture of centralizing it with the pervasive model of Internet technology - the client server model.

2.4.7 Advantages

 It was essential to follow certain models and probably I have tried to explore different sets of architectural styles for
each apps. For example the ExamVault website follows a typical client server model with most of the visual rendering
predetermined on the server side whereas in NCLProgress the majority is done on the client side, similarly for

 25

IvoryTower which forms the backbone of apps by providing them data uses a RESTful architecture in delivering the
information. I will be detailing about these styles later in fuller detail later in the thesis but it is to be noted that
modularizing the apps and creating a domain for a coherent set of functionality enables the exploration of creating
bespoke architectures that are well fitted to each domain. This could be a major win from a polyglot perspective as I
have mentioned this enables for integrating newer systems into the ecosystem with ease.

2.4.8 Tradeoffs made

2.4.9 Towards better architectures

 Lack of my knowledge with respect to software architectures in general and inability to visualize the future of these
apps have rendered to this to be sub-optimal but the good thing about software is that everything can be rebuilt from
scratch once you have explored the domain space thoroughly.

 A few structures that I have in mind to architecture the ecosystem was Supervisor-Workers model from Erlang OTP
documentation. Attention had to be paid to the behaviour of this software. I have decided that if further work is to be
carried out if I wants to create a completely resilient system. The implications of adopting this model is further
explained in the [future] section.

Notes to self

 Fred Brookes' tar pit. Silos and Snowclones.

 26

3.5 On Research Methodology

 The methodology followed here is to collect information from various sources. Alan Kay speaks about thinking the
present reality as a construct which is a result of amalgamation of different theories that people have forged up and
to reconstruct it, look beyond what is and cherry pick the set of consistent ideas that will help you form a harmonious
approach.

 Following this approach, I have tried to pick only the elements that matters constantly pruning these resources as
needed and re-adjusting my hypothesis in the light of new data.

Caveats

 Confirmation Bias. You look where you steer. This has been something that I am not totally sure that I have gotten
rid of. If I am to stand back and evaluate what I have done so far in the way I have done it. 80% is because I have
chosen the routes and the routes then determined where I will reach. Choosing the path is the hardest and the funny
thing I have learnt is that most of the times you will be wrong. But the beauty then again is that life even though feels
short gives you ample time to backtrack on your ideas. Especially because this is a domain where in my opinion,
humans have the least clue on how to create process that work and to write ones that work, let alone how a
coordination of them.

Research

 Was made into user interface designing. The modules that I took in the university guided my decision.

I do I understand

 Experential knowledge as the guidelight. http://blog.ncase.me/i-do-and-i-understand/

Structure of Clojure Ecosystem

 Clojars, Leiningen for dependency management and automating workflows.

Database Solution

 As I started looking for a database solution, one of the foremost and most widely used entrantants in the field was
something known as SQLKorma which was written by Chris Granger but was waning under development cycles, this
lead me to look for options and a twitter conversation led.

 27

 I eventually had to settle with Postgres.

 28

4.1 Current fragmented ecosystem

 A typical student in Newcastle University is introduced to a nebulous and fragmented ecosystem. It lacks a unified
architecture and this results in a lot of time being wasted trying to learn, unlearn and re-learn interactions. At the
moment, Newcastle University employs a set of apps listed as follows:

 Blackboard: Keeps track of student materials. NESS: University's own interface to keep track of student data and
coursework deadlines and submission. Timetables: A web interface to timetables. Library: A dedicated website for
library to search for books at various libraries of university, keeps track of loaned books. Outlook: Web based email
client developed by Microsoft Crypt: Archive of exam papers

 NUVision: Archive of lecture videos.

 These are some of the web applications that a student typically comes in contact on a day to day basis. A preliminary
analysis of the user interface of these apps reveals that almost none of them share consistent user interaction patterns
that help ease the user experience. The only superficial one that can be pointed out is the Shibboleth Gateway which
enables access to all the apps from a single point entry.

Observations

 Some people go on to refresh the browser which can be simply eliminate with an email notification which user can
enable when they want to be updated or this data can be shown on the Dashboard using websockets if they prefer.
This is detrimental for the server which takes redundant hits and for the user since he is pointlessly clicking on the
reload button when there's no actual update. This induces a lot of time consuming behaviour such as constantly
refreshing the NESS (current portal for getting marks at Newcastle.) This in my opinion is serious time that can be
spent elsewhere in a more productive manner.

 One another problem that results from the apps not sharing a common database is that there is no apparent semantic
separation of concerns between the apps. Blackboard application displays the coursework deadlines on a notification
area which is immune to changes done in NESS. This discrepancy results in confusion among the students since there
are two incongruous representation of the same data. Each app deployed in the university at the moment takes care
of more than one thing with apparently distinct databases.

 This dissertation proposes that much better can be done by imposing an architecture that ties together all the
different apps with the same visual language. As outlined in the design section, all the apps shown here are designed
with core precept of having conceptual integrity internally as well as amongst them. An overall architecture and
visual language has been developed to describe all the applications from the ground up.

 This problem can be eradicated by having a consistent knowledge repository. My research pointed at two ways to
achieve this. One is to have a centralized database that takes care of all the information single handedly. Other
approach, which is much more resilient in nature, is to have a distributed database that keeps the information in
synchronization across the different applications. This dissertation adopts the former approach of having a centralized
architecture since it was of importance that the various requirements and contracts between the data had to be
figured out before a distributed database was deployed.

 29

 But the major advantage of having separated these apps at their concern boundaries is that it allows for much more
focused development. By condensing the amount of information each app holds it drastically reduce the amount of
complexity budget the student has to store in her head while navigating a user interface. Unlike Blackboard, which is
a melting pot of everything university related, each application in this ecosystem does one thing and one thing only.
This endows the user to determine the most salient information faster since the number of choices and user interface
acrobatics she has to perform is reduced.

 30

4.2 Ivory Tower

 There are two ways of constructing a software design: One way is to make it so simple that there are
obviously no deficiencies and the other way is to make it so complicated that there are no obvious
deficiencies.

 — C.A.R. Hoare, The 1980 ACM Turing Award Lecture

 Hoare's insightful remark points at two ways to build software systems. I feel applications developed for this thesis
exists somewhere in a transient stage between these two extremes. Currently they have a lot of identified and as of
yet unidentified deficiencies but in some sense they always will be so at one point or another due to the turbulent
nature of specifications that tries to account for a constantly evolving academic context. Here I present all the
constructs that I have identified towards addressing some of the concerns that current applications address. By virtue
of the single responsibility principle, I have tried to extend functionalities of the current apps wherever it seemed to
add value. An example would be the modality presented in one of the applications to follow where the sliders enables
the student to explore and evaluate their future coursework marks and its impact on the stage and overall averages.

4.2.1 Ivory Tower

 As outlined in the theory section, the architecture's central point of contact is the consolidated datastore that I have
named as the Ivory Tower. This is an abstraction that sits on top of a database and accumulates data from various
dynamic endpoints. It is responsible for serving data to the various components of the universe and also for
maintaining a consistent interface for all applications. It does this by providing an API that every app can interface
with.

 This approach provides some advantages over letting all the applications directly connecting to the database. First of
all it decouples the implementation from the interface. This essentially means that any database can be swapped in
place of the current concrete representation. This approach has led in my experience to keep the architecture be more
flexible and secure.

 A student's only point of contact with this system is through the gateway login. This is similar to the Shibboleth
interface Newcastle university currently has.

 [Image here]

 It invokes the metaphor of space mentioned in the theory section with an astronaut helmet in place to give the feel of
an exploration. Once the user logs in, they are redirected back to the respective application where the request

 31

originated. All the rest of the communication with the application is conducted over the wire with AJAX requests. A
popular approach is to use JSON as the data exchange format but development in Clojure enabled me to the use EDN
in place of JSON and it made the implementation a bit smoother. One other alternative worth exploring here is the
newly introduced data format Transit [Transit 2015]

 32

4.3 Exam Sieve

 Exam sieve is conceived to analyze question papers on their topic distribution. It currently takes the place of the crypt
system in Newcastle but with significant advantages of having extra metadata on each exam paper.

 This is achieved by tagging each question with a tag and using this information to calculate the overall distribution of
marks. This activity is to be done voluntarily by the students in the current set up.

 Tags on the questions

 The app currently aims to replace the crypt system employed at the university but with extension of having metadata
available on each question paper that helps the students to visualize the topic distribution.

 The rationale behind creating this app was foremost to create awareness about the topic distributions in each paper
so that a student can use the data visualization to inform himself on where to focus on. In my evaluation, there are
two ways to interpret the data, either the student can prioritize on the topics that have been recurrently appearing

 33

each year and focus only on the ones that have higher proportion but on the same hand, the other topics as they
become diminished in their importance could be chose by the tutors to appear this year since question papers were
never set on those topics.

Design

 The design uses a sidebar to feature all the modules the student is enrolled in. It also features a menubar that lets the
user to navigate to the most important exam papers in the past few years with the help of a sliding queue of last four
years.

 34

4.6 Progress Mate

 Progress mate is one of the apps that I consider to help drive the sure decision and it think is the single best
illustration of how this platform would hepl provide the user with more leverage than any toll currently rpovides.

 Only downward tree accumulation at the moment but in the future, this would be expandend to have predictive
powers such as slidering forwardig ving an estmate of how much to achieve.

Implementation Details

 This was implemented with the help of React. It is a new framework that is created by Facebook to create The V of .
Clojurescript has Om. A model in mind that helpde me to come to a fuller appreciation of thi was the idea of a tree.
One way data flow. Illustrate with a diagram.

What?

 A store of exam papers analyzed with data visualization tools.

Why?

 Inform students about topic distribution and act as a consolidated archive for exam papers. Provide additional meta
data over the existing Crypt exam vaults.

How?

 Enables labelling of question papers.

When?

 Mostly required during exam times.

For Who?

 For students who are facing their exam. Acts as a prioritizer for their exams.

 35

Design

Warm Colors vs Cool Colors

 Warm colors to indicate problem. Cool colors to indicate good marks.

 At a view the students can have an idea of which module they are doing a good job at and what needs improvement.
Current systems lack any kind of such indication to drive the efforts of the students. Little hints like his can go a long
way towards driving the efforts of the student.

Development

 React has things split into different places and one way data flow.

 One image that helped me grasp how React works is to view it as a tree model from development and then
coordinate the changes.

 [Probably insert an image here describing my understanding here.]

 Om manages all the state in one place. It’s an outgrowth of Clojure philosophy and seeing React from a lenticular
prism of Clojure philosophy.

Downward accumulation

 Marks are accumulated only downwards.

 36

4.3 Curriculum

 Curriculm is the app that provides consolidated storage for all the course related materials. All the materials are kept
and if possible, implement a search capability using JSON that filters the search result. All the videos which are now
available through panorama is now indexed and kept alongside. Use of module icons is employed. The timeframe on
tis dissertation only allowed for cerating a limited set of icons but if future work iss to be conducted a more
comprehensive iconset can be developed and deployed.

 What advantages does it provide over current systems?

 A fuller appreciaton of this website would be possible when the accompanying dashboard is brought into context.
The current practice uses an indication in the form of a [provide screenshot] clock notification to show that one
among many activity has been conducted. Following the DRY and SR principle ensures that much more focus and
clarity can be brought about when representing notification for the specific module.

On implementation

 Through the wire EDN from ivory tower. This data is then marshaled. Evaluate why EDN is better than JSON for this
purpose.

What?

 One stop place for all degree related course materials. Includes videos, courseworks, course materials.

Why?

How?

When?

For Who?

Design

 37

4.7 Student Pad

 If Dashboard is the nexus of all applications, student pad is the community nexus. There is also plans to transform it
as a cross departmental channel communication in the future, but with the limited scope of this dissertation, this has
been shortened down to a student only community site that lets the student. At it's current form it meerly acts as a
regulatory service which helps students to opine on a module and share their views.

What?

 A store of exam papers analyzed with data visualization tools.

Why?

 Inform students about topic distribution and act as a consolidated archive for exam papers. Provide additional meta
data over the existing Crypt exam vaults.

How?

 Enables labelling of question papers.

When?

 Mostly required during exam times.

For Who?

 For students who are facing their exam. Acts as a prioritizer for their exams.

Design

 Why was a sidebar preferred?

 Moving sequence of three years to show the revelant years since curriculums get outdated.

 38

4.5 Dashboard

 Dashboard is the nexus. It is the central hub for tracking down everything that is happening with the projet. THe
dashboard yields itself to an interaction :

 [Icon Fan Image]

 This interaction as outlined in the overview part of this section allows for a consistent navigation pattern to explore
all of NCLVerse

 Notifications

 Will be displayed on the icons this mwould be enabled by using websockets since websockets would allow for doing
realtime updates and is much better than AJAX for polling. From a user's perspective this means that they can at a
glance get to know where the activity is happening and hence make an informed decision. The ordering of the apps
are to be determined in the order of most recent notification. One of the short comings of this view is that only a
limited amount of apps can be displayed using this style, even though this can be exteneded with the helpo fo arrows
a better extensible pattern is to be formed when the number of applications increase beyond.

 Write about mobile considerations.

 Another approach was but this was escheewed in favour of the currevt interaction as it seemed like a good
metaphorical fit for the student as an astronaut in space metaphor that was invoked earlier.

What?

 The frontend for all activity happening inside the NCLVerse.

Why?

 Inform students about topic distribution and act as a consolidated archive for exam papers. Provide additional meta
data over the existing Crypt exam vaults.

How?

 Enables labelling of question papers.

When?

 Mostly required during exam times.

 39

For Who?

 For students who are facing their exam. Acts as a prioritizer for their exams.

Design

 A dashboard that invokes the metaphor mentioned. Cross link to the universe metaphor.

 Cumulate all notifications then filter them based on the tag. Does a tree based navigation make sense here?

 40

5.1 Evaluation

 No theory is complete without proof that it works in practice. To demonstrate that these ideas get at where I was
aiming, I present a number of case studies I have conducted with the products I have described so far.

 Computer technology changes quickly and as a result specific technical knowledge, though useful today becomes
outdated quickly. Seen from this lens the following were the things that this dissertation provided me of value.

 Conway's Law Conway's law is an adage named after computer programmer Melvin Conway, who introduced the
idea in 1968; it was first dubbed Conway's law by participants at the 1968 National Symposium on Modular
Programming. It states that

 organizations which design systems … are constrained to produce designs which are copies of the communication
structures of these organizations

 —M. Conway

2.5.4 Tradeoffs of Open Source

 Things are open. This level of transparency lets the designers to create their own systems and include the necessary
changes in the other apps to reflect this. This means that interoperable technologies and other systems that fit into the
ecosystem can be introduced with much ease (Invoke the metaphor of LEGO here?)

2.5.5 Developer Accounts Future

 Looking towards the future of this ecosystem, one of the things that I think would make sense is to have an . It can
be administered from the documentation websites [cross-link] that have been mentioned previously.

2.5.6 Design Process

 Once systems are divided into relatively independent parts, the third step of the design process occurs: creating
visual representations as fit solutions for each sub-part. These sub-parts are then visually fitted together into a whole.

Time Log

 Include in Appendix.

Path Followed visualization

 41

Reliability

 Single point of failure. A way to improve this can be found in the future section.

 Current systems without fail would have bugs when corner cases arises. Even though I have tried to prevent them by
writing tests, it only works to the effect of checking only for the problems that I could forsee. In another words, it is
limited by my understanding of the problem. But the corner cases could be much larger than that.

 If time allows, I would opt for test.check, a generative testing library that opts for far more coverage than traditional
tests. But even then I think a better idea would be to create fault tolerant programs and this indicate that I have to
allow for some resilience. The amount of resilience in the current software is very minimal to non-existent. If
something goes wrong, some manual recovery from my part would be necessary to address these problems. This have
to be eradicated and as I point out in the [link here] future section. This can possibly be addressed by adopting an
Erlang like fault tolerant behaviour.

 Clojure enabled EDN over the wire.

What this project endowed me with

 The decision to use functional programming has been great to appreciate the fact that there is more than one way to
reach your destination. And as Alan Kay writes in Computer Software in Scientific American, the intellectual limits of
Computers are not yet understood and this has been an experience which more emphasized the need to understand
clay so as to construct better pots. Computers are capable of self-interpretation whose upper ceiling has not yet been
understood.

Growing a community

 Every complex system is made alive not by the code but by the action of people who use the system to their ends.
Starts from March 1 with Bundles and ModuleBridge. The toughest test of the system is when it tries to be useful in
contexts where the designer didn't indent it to work. It hence was an interesting experiment to see what kind of uses
people liked to put these systems into.

The Right Kind of Pessimism

 The right kind of pessimism is one where you assess the problems even after something works. It is good to see these
systems as good looking or may be even well performing but one of the core values underlying in the construction of
such a system is to focus on the kinds of things that this disables and a few such views. But this is really limited as it's
the creator evaluating these systems and it is any way going to be an attempt in futility because I'm behind the
creation and there's only so much that I can see. I will leave it to the reader to assess the system, break it down and
take away the components if any from the source code (if you can make your way through those lisp paranthesis first)

 42

Time Tracking

 While tackling the project it is easy to miss the forest for the trees and the trees for the forest but it is even tougher to
miss the incumbent drought that is about to hit the forest. I have exercised my utmost efforts at crafting the apps
here, but for someone at my level of expertise can’t possible handle the extended usage and adaption of the
ecosystem, constant pruning of the systems and subsystems is to be maintained if the ecosystem is to be prolonged.

Unforeseen usages

 Perhaps the best test of a system is how it acts when users try to achieve new things with this. Being the designer of
this system I am illposed to judge this but I think it might be helpful to get information from others after having used
this system for a reasonable amount of time.

Design Stack

 Visualize.

Development Stack

 Visualze.

Future

 If the use of the system is to be continued it has to be ensured that high precision performance tuning is only done
after properly understanding the problem domain. Even if all the unit tests passes it doesn't guarantee that some of
the combination of the functions and certain characterists which can never be unit tested. It is unreasonable to unit
test everything. New changes introduce new pathways to failure.

 These new forms of failure are difficult to see before the fact; attention is paid mostly to the putative beneficial
characteristics of the changes. Because these new, high

 43

5.2 Results

 The results were mostly positive. And a lot of criticism on the way things have been put together. But as a proof of
concept idea and foundational structure the results prove a much better foundation than the current one. I think it
owes a large share to the design language which played a unifying language. Reduce this down to questions to fill in
after evaluation.

Room for focused improvement

 A lot of room has now been generated to focus on the improvement.

Meeting the end goals

 The system as it stands now is a pretty barebones

 44

5.3 Learnings

 One of the main take aways from this project was to develop the app in an iterative loop rather than an incremental
fashion. A lot of times I ended up painting the picture in an incremental fashion where in I would complete one app
of the ecosystem. Premature optimization is the root of all evil. Even though this was in my mind when constructing
the app. I lost the forest for the trees. I was making sure that I don't optimizing the function. But what I had to do was
to take in view the entire system complete one whole loop and then start painting in the details. This is something
that I would be using throughout my life from now on.

Incremental vs. Iterative

 One of the major learnings that I have made in the development of software was that development is better done in
loops of iterative improvements than piecemeal incremental stuff. Lack of adoption of this guiding principle turned
out to be detrimental even near the end of writing this dissertation when a certain bug in the PDF exporting system
caused lose of considerable amount of time. Developing one complete loop and then strengthening it with additional
support structures is what I think a superior way to develop software is rather than putting it together incrementally.

 45

6.1 Looking Back

 Looking back at this project I think it has been a big journey trying to figure out a lot of Clojure. Learning some
pretty life changing concetps from functional programming lanuages.

 46

6.2 Future

 What the future holds.

6.2.1 Next Apps

 The current ecosystem could really benefit from

6.2.1 Design Improvements

 What advantages this brings in from a tutor's perspective and university's perspective.

 Learning data from the students, mockup a rough UI mentioning how a tutor could employ and learn from the data
accumulated.

 And cross department functionality.

6.2.1 Code abstraction improvements

6.2.1 Performance improvements

Raise the abstraction bar

 I see if further work is to be carried out, the ante of abstracting the program creation can be further elevated and
reaching a position where components can be put together by composing higher order functions.

6.2.2 Distributed Architecture

 Central system means that single point of failure. I have been looking at OTP architecture adopted as the core
programming model for distributed programming in Erlang and it looks like a promising model to adopt for this
product.

 It would be an interesting problem to see how the data coordination which is much simpler now owing to a central
consistent source is to be maintained across multiple systems with unified knowledge representations.

 47

OTP Architecture

 Soft real time system. Bring in Erlang.

6.2.3 Administrator/Tutor frontends

 This project cannot be deemed to a complete system without having a complementary tutor frontend. While the
project didn't give me room for creating a administrator frontend. It was also out of the scope because of the given
time frame.

6.2.4 Multiverses

-

-
-

-
-

-
-
-

-
-

-
-

-
-

-
-
-
-
-
-
-
-

 48

6.3 Bibliography

[Ohno 1988] Toyota Production System: Beyond Large-Scale Production, Productivity Press, ISBN 978-0-915299-
14-0
[Lakoff Johnson 1980] Metaphors We Live By, George Lakoff and Mark Johnson
[Kay 1984] Computer Software, Alan Kay, September 1984. Accessible at:
http://www.vpri.org/pdf/tr1984001_comp_soft.pdf
[Rosch 1978] Rosch, E. (1978). Principles of categorization.
[Shklar Rosen 2009] Web Application Architecture: Principles, Protocols and Practice (2nd edition) Leon Shklar and
Rich Rosen
[Heroku Purple 2015] http://purple.herokuapp.com/
[Material Design 2015] http://www.google.com/design/spec/material-design/introduction.html
[Nielsen 1995] Jakob Nielsen Usability Heuristics. Accessible at: http://www.nngroup.com/articles/ten-usability-
heuristics/
[ISO9421] ISO9421. Accessible at: http://www.iso.org/iso/catalogue_detail.htm?csnumber=16883
[Schiff 2015] Humanist Interface by Eli Schiff. Accessible at:
http://www.elischiff.com/blog/2015/2/2/humanistintroduction
[Apple 2002] Apple Aqua Human Interface Guidelines
[Allan 2012] The Flat Design Era
https://web.archive.org/web/20150429184523/http://layervault.tumblr.com/post/32267022219/flat-interface-
design
[Raskin 2002] The Humane Interface, Jef Raskin, ISBN 0-201-37937-6
[Cook 1998] How Complex Systems Fail, Richard Cook. Accessible at:
http://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf
[Knuth 1992] Literate Programming. Donald E. Knuth. University of Chicago Press. ISBN 0-937073-80-6
[NCLMain] NCLVerse Main Website: http://nclverse.github.io/
[NCLDocs] NCLVerse Documentation Site: http://nclverse.github.io/docs
[NCLCode] NCLVerse Code Site: http://nclverse.github.io/code
[NCLDesign] NCLVerse Design Site: http://nclverse.github.io/design
[NCLDissertation] NCLVerse Dissertation: http://nclverse.github.io/dissertation
[NCLDocsGen] NCLVerse Documentation Generator: http://nclverse.github.io/code/docs-gen/
[Transit 2015] Transit Accessible at: https://github.com/cognitect/transit-format

Early History of Smalltalk

Erlang Documentation

 http://www.erlang.org/doc/design_principles/des_princ.html

Systemantics

 49

 http://www.amazon.com/Systemantics-Systems-Work-Especially-They/dp/0812906748

Growing a Language

 http://www.cs.virginia.edu/~evans/cs655/readings/steele.pdf

Technologies Used

Programming Language

 Clojure

Clojure Libraries Used

 Ring, Compojure, Enlive, Hiccup, Garden, Om, Clygments, Stasis, Clj-Pdf, Prone, Liberator, Ragtime, Clj-http, Buddy,
Yesql, Environ

IDEs

 Emacs LightTable

Version Control

 Git

Other Technologies

 HTML, CSS, Javascript, Postgres, Lentic

